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Abstract. We study convergence properties of a modified subgradient algorithm, applied to
the dual problem defined by the sharp augmented Lagrangian. The primal problem we con-
sider is nonconvex and nondifferentiable, with equality constraints. We obtain primal and
dual convergence results, as well as a condition for existence of a dual solution. Using a
practical selection of the step-size parameters, we demonstrate the algorithm and its advan-
tages on test problems, including an integer programming and an optimal control problem.
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1. Introduction

Classical Lagrange and penalty functions and algorithms based on the
corresponding duality framework can only be applied to some special clas-
ses of constrained optimization problems. This justifies the quest for other
kinds of augmented Lagrangians, which are able to provide solution algo-
rithms for a broader family of constrained optimization problems. The
works [23-26, 31] study new kinds of Lagrangians, and their applications
to different classes of constrained optimization problems. Specific applica-
tions of some of these new Lagrangians can be found in [8, 9]. The devel-
opment of efficient methods for solving optimization problems depends on
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the duality relations provided by the augmented Lagrangian framework.
The dual problem is typically a nonsmooth convex problem, and hence
nonsmooth minimization techniques can be used for solving it. A typical
example of these techniques is the subgradient method and its extensions.
Subgradient methods were introduced in the middle 1960s, in the works of
Demyanov [6], Poljak [16-18] and Shor [28, 29]. A detailed presentation of
these methods can be found in [3, 5, 13] and the references therein.

In this paper we study nonconvex optimization problems with equality
constraints, where the cost and constraints are only required to be con-
tinuous; namely we do not pose any differentiability conditions. Note that
inequality constraints can be reformulated as (nonsmooth) equality con-
straints, without introducing extra (slack) variables (see the test problems in
Section 5.2). In order to devise an efficient duality framework for solving
nonconvex, equality constrained optimization problems, Gasimov proposed
in [8] a modified subgradient (MSG) algorithm. The MSG algorithm solves
the dual problem obtained with respect to the sharp Lagrangian. Note
that sharp Lagrangians were introduced by Rockafellar and Wets in [20,
Example 11.58]. This concept was also studied in [1, 2], where it was used
for establishing conditions for the existence of solutions and zero duality
gap properties for some classes of nonconvex optimization problems with
inequality constraints.

One may consider versions of the MSG algorithm incorporating other
forms of augmented Lagrangian functions (see [20, Chapter 11], where the
authors study a family of augmented Lagrangians including the sharp as
well as the classical quadratic augmented Lagrangian as special cases). In
the present paper we focus only on the MSG using the sharp Lagrangian,
as an extension of the approach taken by Gasimov [8]. A study of the con-
vergence properties of the MSG algorithm using other augmented Lagran-
gians will be a focus of future study.

Our aim is to give a new convergence analysis for the MSG algorithm and
propose new formulas for the step-size parameters. A theoretical and practi-
cal advantage of the MSG algorithm is that it generates a strictly increasing
sequence of dual values. We point out that such a property is not possessed
by the classical subgradient method. This important property, together with
the new formulas for the step-size parameters, allows us to obtain additional
convergence results. Namely, we establish convergence of the sequences of
dual values and dual variables, and optimality of all accumulation points of
a primal sequence related to the algorithm. To our knowledge, analogous
convergence results do not exist for subgradient methods. Our analysis also
allows us to obtain a condition (associated with the dual sequence generated
by the MSG algorithm) which implies existence of dual solutions.

Our convergence and existence results are proved first for a general,
and then for a specific, choice of the step-size parameters. For the specific
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choice, we are able to prove that boundedness of the sequence is equiva-
lent to the existence of solutions. For a numerical implementation of the
MSG algorithm we select practical step-size parameters. We demonstrate
the advantages of the new step-sizes in some example applications, includ-
ing optimal control and integer programming problems.

The paper is organized as follows. In Section 2, we review the theoret-
ical background concerning the sharp Lagrangian duality framework. In
Section 3, we state the MSG algorithm and provide motivations for the
improvement of the convergence results given in [8]. In Section 4, we give
our convergence and existence results. In Section 5, we define practical
step-sizes for a numerical implementation, and demonstrate their use on
test problems.

2. Preliminaries
We consider the nonlinear programming problem:

(P) minimize fy(x) over all x in X satisfying f(x)=0,
where X is a compact subset of R”, and the functions fy: R” — R and
f:R" — R™ are continuous. Denote by R., | -|| and (., -) the set of non-
negative numbers, the Euclidean norm and the Euclidean inner product on

R™, respectively. The sharp augmented Lagrangian L :R" x R™ x R, > R
associated with (P) is defined as

L(x,u,c):= fo(x)+cll fO)ll = (u, f(x)), (1
where x eR", u € R™ and c€R,. The solution set of problem (P) is denoted

by S(P). We typically denote an element of S(P) by x. The dual function
H:R" xR, — R is defined as

H(u, c) ={Cnei)1}[fo(x) +cll f Ol = (u, f(x))]. (2
Then the dual problem of (P) is given by

(P*: max H(u,c).

(u,c)eR™ xR,

The solution set of problem (P*) is denoted by S(P*). We typically denote
an element in S(P*) by z=(u,c). For convenience, we introduce the set

X(u,c) =Argl}(ﬁn[fo(X) +cll f OO = (u, f(x))] ()
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We assume in this work that we are able to solve the minimization problem
given above. Let d(z, w):=||lw —z||* for w,zeR".

Zero duality gap and saddle point properties are crucial in every duality
framework. Theorems 1-3, quoted below, state that these properties hold
for the sharp Lagrangian duality scheme, when applied to problem (P).
Theorems 1 and 2 are proved (in a more general setting) in [20, Theorem
11.59], (see also [2]). [Note that Theorems 1-3 have been proved in [21] for
the classical quadratic augmented Lagrangian. The proof of Theorem 3 is
a straightforward modification of the one given in [21, Theorem 6.4].

THEOREM 1. Suppose that inf P is finite and consider the augmented
Lagrangian L given in (1). A pair of elements x € X and (i1, c) eR™ x Ry fur-
nishes a saddle point of L on X x (R™ xR.) if and only if x € S(P), (u,c) €
S(P*) and inf P =sup P*.

THEOREM 2. A pair of vectors x € X and (u,c) e R™ x Ry furnishes a sad-
dle point of the augmented Lagrangian L on X x (R™ xR,) if and only if

$eS(P) and h()=h©O)+ (v,d)—Cclvll for all veR™, @)

where h(v) :=1inf{ fo(x)| f (x) < v, x € X} is the perturbation function associated
with problem (P). When this holds, any ¢ > ¢ will have the property that

xeS(P) if and only if x€X(u,c).

REMARK 1. If (i#,¢) is a solution of the dual problem, then the pair
(i1, ¢) is also a solution for each ¢>c.

THEOREM 3. Suppose that fy and f are continuous, X is compact, and a fea-
sible solution of (P) exists. Then inf P =sup P* and S(P) # (. Furthermore, the
dual function H given in (2) is concave and finite everywhere on R™ x R,.. Conse-
quently, this maximization problem is effectively unconstrained.

The following theorem was proved in [8] and will be used for defining a
stopping criteria for the MSG algorithm.

THEOREM 4. Let inf P =sup P* and suppose that for some (u,c)€R™ x
Ry, and x € X,

min L(x, @, ¢) = fo(¥) + el f (Ol = (@, f(E)). (5
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Then x is a solution to (P) and (u,c) is a solution to (P*) if and only if

f(x)=0. (6)

3. The MSG Algorithm and Motivation

The MSG algorithm is devised for solving the dual problem (P*), which is
described as follows:

(P*) ~ max  min[fo(x) +cll f) — (u, f(x))].

(u,c)eR" xR, x€X

Let us outline the MSG algorithm.

Step 0. Choose (ug, cp) with ¢ >0. Set k=0.
Step k. Given (uy, ci):

Step k.1. Solve the following subproblem:

minf fo (x) + e[l ()1l = {ute. f ()] (7)

Let x; be a solution, i.e., x; € X (uy, cx). If f(x;) =0, then STOP; by Theo-
rem 4 (uy, c;) is a solution of (P*) and x; is a solution of (P).
Step k.2. Set

Uyt =g — S f (xx), (®)
Crr1 =k + (s +e) | f o)l ©))
where si, g, >0. Set k=k+ 1 and repeat Step k.

Given a dual iterate (ug,cy), and x; € X(uy,cy), we introduce the
following notation for brevity.

2k i= (ug, cx),
Xk € X (ug, cx),

Jei=f (xx),

X € X(ug,ck +pB), where 8>0,
Jei= F(&0,

Hy:= H (uy, cx),

H:=H(u,c),

We start by quoting the convergence results given in [§].

THEOREM 5 [8]. Let {(ux, cx)} be the sequence of dual variables generated
by the MSG algorithm. Assume that (uy,cy) is not a solution of the dual
problem for any k, that is, fi 20 for all k. Then
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(@) 0 < Hy1 — Hy < Qs +e0) | fill? for all si, & > 0.
(b) Assume that there exists a dual solution 7= (u,c) and let d,=(z, z). If

then dyy1 —d; <0.
(c) Assume again that that there exists a dual solution and that all condi-
tions of Theorem 3 hold. If

(H — Hy)

W, then Hk—)ﬁ (10)
k

O<ep<sp=

Our aim is to improve the convergence results given in Theorem 5. Instead
of requiring the step-size s; to satisfy (10), we establish convergence to the
optimal dual value when s; is chosen in a more general way. We also prove
convergence of the whole sequence of dual variables for this general choice
of Sk

On the other hand, the sequence {x;} generated by the MSG algorithm
may not converge to a primal solution. Indeed, Example 1 furnishes a case
which satisfies the hypotheses of Theorem 5, but generates a sequence {x;}
which does not converge to a solution of the original problem. For this
reason, we introduce in Section 4 an auxiliary sequence {X;} such that x; €
X (ug, ¢ + B) for all k and for some B >0, and establish optimality of all
accumulation points of this sequence.

EXAMPLE 1. Let fy, f: R — Rbedefinedas fy(x):=|x|and f(x):=1—x2,
respectively. Assume also that X =[—1, 1]. It is easy to see that S(P)={1, —1}
andinf P =sup P*=1. Let us show that {x;} calculated from the MSG algorithm
does not converge to a solution of the original problem. It is straightforward to
verify that, if (uy, ¢x) € R x R, is such that (¢; — uy) < 1, then

X(ug,c)={0}, and  Hy=(cx —uy). (11)

In this situation, we must have x; =0 and so fi=|fy|=1. Using the latter
fact and that H =1, the rule (10) gives
1 — (cx —ug)
Sp=—".
5
Take &, =0.5s,. Now we claim that, if (¢, —ug) <1, then (cpq1 —ury) < 1.

Indeed, using the definition of the MSG algorithm, (12) and the choice of
&k, wWe get

(12)

Cp — Uk
+

7 %<1.

5
Ck+1 — Uk41 =Ck — Uk + 585k =
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As a consequence, if we start with (ug, cg) € R x R, such that ¢y —ugy <
1, then it must hold that (¢; —uy) <1 for all k. In this case, by (11) the
sequence x; =0 for all k. Since S(P)={—1, 1}, the sequence {x;} does not
converge to a primal solution. However, convergence of the dual values is
guaranteed by Theorem 5. Indeed, the last expression implies that

co—up)—1
Hk=Ck—Mk=%+l. (13)
ok
Since ¢y —ug < 1, the sequence {Hy}; converges increasingly to H=1. More-
over, it can also be shown that the dual variables converge to a dual solu-
tion. In order to achieve this, first note that

k k
3
Ct1 —00=Z(Sj +e)=3 Zsj-

j=0 j=0
Then using (12) and (13), and letting k — oo, it is not difficult to derive
¢=co+ 51— (co— up)] (14)

for some given ¢y and u( such that ¢o—ug<1. Combine this fact with (13)
to get u=c—1. It can be proved that H(u,c)=c—u=1 and hence (u, c)
is a dual solution.

Under the basic assumptions on problem (P), Theorem 3 asserts that
S(P) is nonempty and there is no duality gap. However, the set of dual
solutions S(P*) may in fact be empty, as the following example shows.

EXAMPLE 2. Let fj, f: R — R be defined as fy(x):=—|x| and f(x):=
(1/2)x2, respectively. Assume also that X =[—1,1]. It is easy to see that
S(P)={0} and inf P =sup P*=0. It can be checked that
Argmin fo(x) +ell £ ()| —f (x) = Argmin — x| + <"
xe[~1.1] xe[=1.1] 2
_{{ﬁ,—ﬁ}, if c—u>1,
{1, -1}, if c—u<l.

As a consequence, the dual function H is given by
~1

el ifc—u>1
— ] 2(c—u)’ ’
H(u,c) {_1_’_%, if c—u<l.

It is clear that ﬁ:sup(u’c)eRxth (u,c) =0, and that this supremum is
never attained, so S(P*)=40.
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4. Existence and Convergence Results

Throughout this section, we assume that the hypotheses of Theorem 3
hold. Lemma 1 sets conditions which will be instrumental in the first part
of our analysis, using a general choice of the step-size parameter s;. Later
on, these conditions will be relaxed, under a specific choice of s.

4.1. ANALYSIS WITH A GENERAL CHOICE OF Sk

LEMMA 1. Consider the notation and definitions of the MSG algorithm.
The following statements are equivalent.

(@) 2pZo (s + el fill < oo.
(b) The sequence {z;} is bounded.

Proof. From the MSG algorithm

cmp1—co=) _(sc+e0llfill and i —uoll <Y sell fill. (15)
k=0 k=0
Then we readily obtain that conditions (a) and (b) are equivalent. O

Conditions which guarantee the existence of dual solutions are often
related to properties of the perturbation function (see (4)) associated with
the problem. Unfortunately, the calculation of the perturbation function
is very difficult, and hence it makes sense to establish alternative ways
of guaranteeing existence of dual solutions. One of these alternative ways
was given in [1] by Azimov and Gasimov, who presented conditions which
depend on the objective and constraint functions. Other conditions of this
kind can be found in references [9, 22, 24-26]. We give below a new exis-
tence condition by using the dual sequence generated by the MSG algo-
rithm using a general step-size s;. In what follows, {zi} = {(ux, cx)} 1s the
dual sequence generated by the MSG algorithm. In view of Theorem 4,
we see that the MSG algorithm either stops at Step k.1, yielding a primal-
dual solution; or it generates an infinite dual sequence. So in our analysis
we only study the case in which the algorithm generates an infinite dual
sequence. This assumption will hold until the end of this section and it is
equivalent to require f; #0 for all k.

THEOREM 6. Let H be the optimal dual value (i.e. H=sup P*). Assume
that {zi} is bounded and that the step-size s; satisfies

(H — Hy)

uld 16
I fill* (1o

Sk =
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for some fixed n>0. Then every accumulation point of {zi} is a dual solution.
In particular, S(P*)#0.
Proof. By (15), boundedness of the sequence {(uy, c;)} implies that

D sill fell < +o0. (17)
k=0

Let (&, ¢) be an accumulation point of the sequence {(u, cx)}, and denote
by K the infinite set of indices such that

li = (i, C).
Jm (ug, cx) = (u, c)
k— 00
We will prove that (iZ, ¢) € S(P*). By boundedness of {x;}, we can also
assume that the whole sequence {x;}iexc converges to some x. If f(x) =

0, we claim that x € X (&, ). In this case, Theorem 4 implies that (u,¢) €
S(P*). Indeed, by definition of x;, we have that

JoOx) + il f ol = ks f (x0)) < fo(x) + el f OOl — (ux, f(x)),

for all x € X and for all k. Taking limits for k € K,k — oo in the above
expression we get

So@) +cll f Ol = (a, £(X)) < folx)+cllf )l — (i, f(x),

for all x € X. Hence x € X (i, ¢) and thus (iz, c) € S(P*). Assume now that
f(x)#0. This fact, together with (17), implies that the sequence {s;}irexc
converges to zero. Using also (16) for k € KC, we conclude that the subse-
quence of dual values {H;}icx converges to H. By upper- semicontinuity
of H we have that

H@u,¢)> limsupH (ug, c;)=H.

kel,
k — o0.

This shows that H(u,c¢) has optimal functional value H and hence
(#,c) € S(P*). The proof is complete. O

REMARK 2. Consider again Example 2, with (cg, ug) =(1, 0), &x =(1/2)s
and s; as in (10). With these choices, the dual sequence generated by the
MSG algorithm is given by

a=1+3/9[B/2)f -1],
ue=(2/5)[1 - (3/2)"]
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and hence the dual sequence is unbounded. This fact follows from Theo-
rem 6. Indeed, since (10) satisfies (16), if {z;} were bounded, then we would
have had S(P*)# . However in this case S(P*) =, and hence {z;} is
unbounded.

We now give a useful and simple estimate.
LEMMA 2. Fix z=(u,c) eR" xR,. Let dy=d(z,z;) Then
dit — di < (5 (e fill? =251 (H (u, ©) = Hy) = 26 fill (e = cp).
Proof. Note that

2 2
div1 —die =z — zk1 I = llz — 2|l
2
= |lzk — Zr1 1" + 22 — 2k» 2k — Za41)-

Let Ay:=|zx — zk41]I> and By :=(z — 2k, 2x — 2x+1). Using the definition of
the MSG algorithm, we can write

A= llug = st 1P + lex — et =11 fel (5 + (s + 807
Combining the two previous expressions, we get
dipr —di= || fil (s + (s +€00°) + 2By (18)
The term By is written out as follows.

Bi=(u —up, up —upy1) + (¢ —cp)(ck — Cry1)
= (u —ug, S fr) — (¢ — ) (s + € || fxll
=sp[{u —ug, fr) — (= c)ll filll = e (c — e ll fill- (19)

In order to estimate the expression between brackets, we use the subgradi-
ent inequality:

H (u, ¢) < H (ug, c) + (= fie. 1 fielD), (u —ug, ¢ — i)

or

[(u —uk, fi) — (¢ —cOll fil|< He — H(u, ¢).
Using this in (19), we obtain

By <sx(Hy — H(u, ¢)) —ex(c —cp) |l fxll-
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Equation (18) now yields

dir1 — di < fill*(sf+ (e +ex)?) — 2[5k (H (u, ¢) — Hy)
+er(c—co)ll filll, (20)

which completes the proof. O

Lemma 2 allows us to prove that the dual sequence is convergent. For
proving that the limit is in fact optimal we will need extra assumptions on
the step-sizes (see Theorem 8).

THEOREM 7. If the sequence {zx} is bounded, then it is convergent.

Proof. Let z be an accumulation point of {z;}, and {z,}; a subsequence
converging to Z. Using Lemma 2 for the choice z:=Z= (i, ¢), we conclude
that the sequence {d(Z, zx)} verifies

dG, zie1) —dE, 7)) < 57+ e fill?
— 25, (H (2) — Hy) = 2e1 || fill (€ = cx).

By Theorem 5(b), {H;} is a strictly increasing sequence for all s, & >0,
and hence limy Hy = sup; H;. Using now upper semi-continuity of H, we
get,

H(z) > lim sup Hy, =lim Hy, =sup H; > H;, for all k.
j j i

So (H(Z) — Hy) >0 for all k. Using also that {c;} is a strictly increasing
sequence, we have that (¢ —c¢;) >0 for all k. Hence,

Az, zip1) —d G, z0) < (57 + G+ e il

Since {z;} is bounded, by Lemma 1, the series with a; := (s,f + (s +
gD fill? is finite, and this implies (by [19, Lemma 2.2.2]) that the
sequence {d(Z, zx)}x is convergent. But the subsequence {d(Z, z;)}; of this
sequence converges to zero, and so the whole sequence converges to zero,
yielding the uniqueness of the accumulation point.

Fix B >0. Consider a sequence {X;} such that x; € X (uy, ¢, + B) for all k.
We call such a sequence a primal sequence. We prove below that all accu-
mulation points of this sequence are primal solutions.

THEOREM 8 (Primal-Dual Convergence). Assume that the sequence {z;}
generated by the MSG algorithm is bounded. Assume also that for some n>0
the step-size sy satisfies
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(H — Hy)

— . 21
I fell® D

Sk =

Then Hy— H and the limit of the sequence {z;} is a dual solution. Addition-
ally, all accumulation points of {X;} are solutions of (P).

Proof. By Theorem 5(b) the sequence {H;} is strictly increasing. Theo-
rem 6 implies that every accumulation point of {z;} is a dual solution.
Since {zx} is bounded, Theorem 7 allows us to conclude that {z;} is con-
vergent. Combining these two facts, we get that {z;} converges to a dual
solution. From (21), we have that

(H — Hy)
S z>n—-.
Kl fell =n A
By Lemma 1, boundedness of the dual sequence is equivalent to the fact
that Y 22 {(sk + &) [l fill} is finite. In particular, the sequence {s¢|| fx||} tends
to zero. Note also that the sequence {| fx||} is bounded. These facts, com-
bined with the expression above, yield H, — H. Now we will show that all
accumulation points of the primal sequence {x;} are solutions of Problem
(P). In order to prove this fact, we will show that the numerical sequence
{Il fel} has zero as its unique accumulation point. Fix >0 and take i €
X (uy, cx + B) for all k. Take a >0 as an accumulation point of the sequence
{Il fel}. So there exists a subsequence {||f~kj||} such that a =lim;_, ||fkj||.
Then

(i, ¢k, +B) + (= fiu L fi, 1D, (0, —B))

H (ug;, cx;) = Hy, <
< H(ug;, e, + B) — Bl fi, |l

H

H

We can rewrite this as
Bl fi, | < H(u,, cx, + Bl fi, ) — He, <H — Hy,.

Using the fact that lim jﬁ— H;;, =0 we get

a= lim | fi,| =0. (22)

Thus the sequence {|| f¢||} converges to zero. Take now % as an accumula-
tion point of {X;}. Since zero is the limit of {|| ||}, we must have f(x)=0.
Without loss of generality, assume the whole sequence {X;} converges to x.
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Then

infP < fo(i)=li{n Joxi) + (e + B GOl — g, f (X))
=tlim min fo(x)+ (e + B f (Ol = (e, £ ()
=li]£n H (uy, cp + B) < H =sup P*,
where we have used the definition of x; in the second equality. By weak

duality, we must have fy(x) = infP and since f(x) =0,x is a primal
solution. O

4.2. ON A SPECIAL CHOICE OF sy

In this subsection we study a special choice of the parameter s; for which
nonemptiness of S(P*) is equivalent to the boundedness of {z;}. The step-
size we consider is as follows:
H — Hk H— H,
R \ k< B
T Il fll

with € (0, 2).
For establishing the announced fact, we need an auxiliary result.

(23)

LEMMA 3. Assume that S(P*)#0 and let {z;} be the sequence generated
by the MSG algorithm with step-size {s} satisfying

.. | H-H
lim inf — S | > —o00. (24)
; [ Al "}

Then {z;} is bounded.

Proof. Fix a dual solution (iz,c) € S(P*). For contradiction purposes,
assume that {z;} is unbounded. This means that either {u;} or {c;} are
unbounded. If {u;} is unbounded, then by (15) {c;} must be unbounded.
Hence in either case we must have {c;} unbounded. Since it is a strictly
increasing sequence, it tends to infinity. On the other hand, by definition
of the MSG algorithm,

llit — i1 1= it — ug + s¢ fi |l
= [|i — ug |* + 253 (it — u, fi) + 7 fill? (25)

In order to estimate the middle term of the expression above we use the
subgradient inequality,

H — Hp < (it —ug, — fi) + (€ —co)ll fill- (26)



68 REGINA S. BURACHIK ET AL.

Multiply both sides by 2s; and rearrange the resulting expression, to get
syt — u, fi) < =255 (H — Hp) 4251 (E — ) || fel-
Combine this fact with (25) to obtain

it — w1 1* < it — ug||* — 28, CH — Hy) + 253 — e) | fill + 21 fill
2(H — H, 2(¢ —
C2H-HY | 2 c@] o7

I fell* Il fil

Assumption (24) means that there exist a constant p € R and an index kg
such that

_nﬁ—m)
FACEE

for all k >ky. As pointed out above, {c;} tends to infinity and hence there
exists an index k; >k such that

~ 2 2
= [t — uiel|” =+ sl fil |:Sk

Sk

< 2(Ck - E)
il

where we are also using the fact that the sequence {|| f;||} is bounded. Alto-
gether, we conclude that for all k >k,

for all k >k,

2(H — Hy) +2(5—Ck) <0,
I ficll? Il fell
This fact, combined with (27), yields ||u —upy1|| < ||t —uy| for all k >k

and this implies that {u;} is bounded. Using Cauchy-Schartz inequality in
(26), we get

Sk —

(e = O fill < —(H — Hi) + || fillllit — sl < 1| fill 1 — wge |
Since we are assuming that f; #0 for all k, we get
(cx =€) < it —ug|

and hence {c¢;} must be bounded, a contradiction. This implies that the
sequence {z;} must be bounded. O

Condition (24) is not practical from an algorithmic point of view,
because it cannot be verified during the process. For this reason, and also
for simplicity of exposition, we replace it by the right-hand side inequality
in (23), which can be effectively checked at each iteration. The latter con-
dition readily implies (24).
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THEOREM 9. Assume the step-size in the MSG algorithm is chosen
according to (23), then the following statements are equivalent.

(a) The sequence {zy} is bounded.
(b) S(P*)#0.

Proof. The fact that (a) implies (b) is a consequence of Theorem 6 and
the left-hand side inequality in (23). Indeed, Theorem 6 implies that every
accumulation point of {z;} is a dual solution. In particular, S(P*) is non-
empty. In order to show that (b) implies (a), observe that this follows
from Lemma 3 and the fact that the right-hand side inequality in (23)
implies (24). O

In the theorem below, we consider again the sequence {X;} such that x; €
X (ug, cr + B), where B >0. We recover the same convergence results as the
ones reported in Theorem 8§, but without the assumption of boundedness
of {zx}.

THEOREM 10. Assume the step-size in the MSG algorithm is chosen
according to (23). Suppose also that S(P*)#0. Then,

(1) The dual sequence {zi} converges to a dual solution.
(i1) The sequence of dual values {Hy} converges to an optimal dual value.
(1) Al accumulation points of the primal sequence {x;} are solutions of
Problem (P).

Proof. By Theorem 9 and the fact that S(P*)#@, we conclude that {z;}
is bounded. Using now the left-hand side of (23) and Theorem 8, we con-
clude that statements (i)—(iii) hold. O

The following simple result will be useful in the next section.

PROPOSITION 1. Assume that one of the following conditions holds:

(i) The stepsize sy satisfies (16) and {zx} is bounded.
(i) The stepsize s, satisfies (23) and S(P*)# .
Then there exists a dual solution (i, c) such that ¢ > cy for all k.

Proof. Under assumption (i), by Theorem 6 it holds that S(P*)#6. So
under either assumption, we must have S(P*)#¢@. Now fix a dual solution
(u, ). Under assumption (ii), and using Theorem 9, we conclude that the
sequence {z;} is bounded. So again under either assumption, we must have
{zx} bounded. Thus there exists ¢ > ¢, for all k. Using Remark 1, we have
that (i,c+c¢) is also a dual solution, and this dual solution is as in the
statement of the proposition. O
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5. Numerical Implementation

In Section 5.1, we select practical step-size parameters for a numerical
implementation of the MSG algorithm. In Section 5.2, we demonstrate
these step-sizes on test problems.

5.1. STEP-SIZE SELECTION

We assume that the dual sequence {z;} generated by the MSG algorithm is
bounded. The step-size s, given by (21) is quite general in the sense that
the constant n can be chosen to be any positive number. Although a wide
range of step-sizes can be chosen using (21), we will rather restrict our
attention to the estimate given in Lemma 2 in deriving a step-size, because
it reflects the structure of the problem.

For simplicity let s, and & be related through s; = ag;, where o > 0.
Since the hypotheses of Proposition 1(i) are satisfied, there exists a dual
solution (u, ¢) such that ¢ >¢; for all k. Now, Lemma 2 for z:=(u, ¢) and
er = asg yields, after some trivial manipulations

2[(H—-H c — dy —d,
50 [( ) +alc . collfell] < B (28)
g )|l fell g ()|l fell
where g(a) =1+ (1 4+ ). Taking now s; such that
skza(H_Hk)+a(C_ck)||fk” 0<5<2, (29)

g@)| fill? ’

we see that the left-hand side of the expression in (28) is nonnegative, and
therefore the sequence {d;} is nonincreasing, and hence convergent. This
choice of s; forces convergence of the dual values towards the optimal
value H.

The most commonly used step-sizes for the classical subgradient method
are the infinite series rule and the known optimal value rule (see, e.g., [12]).
As can be seen, the step-size we propose above for the MSG algorithm
also requires the knowledge of the optimal value. Choosing a value for the
unknown H in the computation of s; is an important issue in subgradient
methods. Note that any feasible solution of (P) provides an upper bound
for H. According to Bazaraa and Sherali [4] H can be chosen as a convex
combination of a fixed upper bound and the current best dual value. On
the other hand, Sherali et al. [27] recently proposed the so-called variable
target value method which assumes no a priori knowledge regarding H.
In the numerical experiments of the present paper we simply use an upper
bound as an estimate H for H to illustrate the behaviour of the MSG algo-
rithm. However, the above-mentioned schemes for updating the estimate H
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in each iteration can as well be utilized to increase the efficiency of the
algorithm.

Recall that any ¢ >c is also a dual solution. So we can replace ¢ in (29)
by an upper bound ¢ for ¢. We set the step-size s; as

_H—H)+a@—clfil

— 30
* 7@ fell? (30)

where g(a) =1+ (1 +a). R

It must be noted that when H is replaced by H > H the right-hand
inequality in (23) does not hold. Therefore Theorems 9 and 10 cannot be
stated. However, the main convergence theorems 6-8 hold.

5.2. COMPUTATIONAL TEST PROBLEMS

In this section we apply the MSG algorithm with the new and the earlier
[8] step-size parameters (Cases (i) and (iii) below, respectively) to three test
problems. We make comparisons among these two cases and the classical
subgradient method (Case (ii) below).

(H— Hy) +a@—co)ll fill
A+ A

Case (i). sx=$§ ge=asy, 0<8<2, a>0.

. H — H;
Case (). si=6———, (6,=0), 0<d<2.
2’|1fk||2
H — H;
Case (iii). ss =6 ————, & =0095s, 0<dé<2.
SILfell?

For the solution of the subproblem in Step k.1 we used the MATLAB
function m-file fminsearch. In this section, x¥, u* will stand for the ith
coordinates of the iterates xg,u;, and ¢* will stand for ¢;. In the tables
reporting the results, x~! denotes the initial guess used for the subproblem
when k=0.

Problem 1. The following nonconvex problem has become a common test
problem (see [7]). It was originally studied by Murtagh and Saunders[15].

min fo(x)=(x1 — 1?4 (x1 —x2)? + (x2 — x3)3 + (3 — x4)*
+(xq — x5)%,
P :{ subject to  fi(x) =x;+x3 +x3—3+/2-2=0,
H ) =x—x3 +x4—2/242=0,
f3(x)=x1x5—2=0.
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Table 1. Problem 1-Case (i) with §=0.5,0=35, 1?:0.1,6:2
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k x{‘ x/2‘ x13‘ xi‘ xé‘ ck

k k
Uy )

ubIFEDN fob)

Hu*, c*)

—1 0.00000 0.00000 0.00000 0.00000 0.00000

6.61 1.00000

0 1.40745 1.57585 1.31868 1.87329 2.28086 1.000 0.00000 1.000 1.000 1.50 0.33359 —0.25987
1 1.11664 1.22044 1.53779 1.97277 1.79109 1.425 0.00278 0.958 0.943 3.9x10~° 0.02931 0.02931

Tuble 2. Problem 1—Case (i) with §=0.5, H=0.1

T T T T T T T T P A L Y C N ()

—1 0.00000 0.00000 0.00000 0.00000 0.00000 6.61 1.00000
0 1.40745 1.57585 1.31868 1.87329 2.28086 1.000 0.00000 1.000 1.000 1.50 0.33359 —0.25987
1 1.34254 1.53502 1.35489 1.84465 2.18073 1.060 0.00236 0.965 0.952 1.17 0.23052 —0.09894
2 1.28971 1.49004 1.39045 1.82401 2.08792 1.102 0.00440 0.939 0.918 8.9x10~! 0.16524 —0.01104
3 1.23202 1.42169 1.43625 1.81843 1.97425 1.134 0.00597 0.919 0.894 5.5x10~1 0.11173  0.03541
4 1.11657 1.22035 1.53783 1.97299 1.79119 1.163 0.00737 0.901 0.894 3.3x10~5 0.02931  0.02931

Table 3. Problem 1-Case (i) with §=0.5, H =0.1

I T T T T - S O P A L T C N ()

—1 0.00000 0.00000 0.00000 0.00000 0.00000 6.61 1.00000
0 1.40745 1.57585 1.31868 1.87329 2.28086 1.000 0.00000 1.000 1.000 1.50 0.33359 —0.25987
1 1.36990 1.55374 1.33872 1.85665 2.22469 1.060 0.00094 0.986 0.981 1.31 0.27087 —0.16018
2 1.33728 1.53096 1.35833 1.84250 2.17223 1.085 0.00184 0.974 0.965 1.15 0.22319 —0.08825
3 1.30787 1.50681 1.37776 1.83058 2.12152 1.118 0.00263 0.964 0.952 9.8x10~! 0.18572 —0.03645
4 1.27974 1.47974 1.39795 1.82119 2.06969 1.144 0.00332 0.955 0.941 8.3x10~! 0.15470  0.00072
5 1.24903 1.44446 1.42197 1.81638 2.00949 1.168 0.00391 0.948 0.932 6.5x10~! 0.12581  0.02709
6 1.11663 1.22044 1.53779 1.97277 1.79110 1.189 0.00445 0.941 0.923 3.0x10~5 0.02931  0.02931

The reported solution [7] is

x=(1.1166,1.2204, 1.5378, 1.9728,

which results in
f0=0.0293,
satisfying the constraints with

I £ (X)) =8.6x1077.

1.7911)

Our solution coincides with the reported one up to four digits of accu-
racy after the decimal point. The iterations using Cases (i)—(iii) are depicted
in Tables 1-3. The classical subgradient algorithm (Case (ii)) and the MSG
algorithm with the step-sizes in Case (iii) reach the solution in 5 and 7 iter-
ations, respectively. With the new step-sizes in Case (i), the MSG algorithm
yields the solution in just two iterations.
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Problem 2. Consider the following quadratic integer programming prob-
lem [7].

min fo(x)zaTx+%xTQx
subject to —1<xxp+x3x4<1
—3<x1+x2+x3+x4<2
Xie{—l,l},
where
-1 2 0
2-1 2
a’=[684 -2], Q= 0 2.1
0 0 2-1

Let g1(x):=x1x2 +x3x4, g2(x) :=x1 + x2 +x3 +x4. Then we can re-write the
above problem with continuous equality constraints as

min fo(x)zaTx+%xTQx

subject to  f1(x) =max(0, g;(x))—1)=0
S2(x)=max(0, —=(g1(x) +1))=0

Ps: f3(x) =max(0, g2(x) —2)=0

Ja(x) =max(0, —(g2(x) +3))=0

4
f5(x) =" 1(xi = D(x; + D=0
i=1

The solutions obtained by the MSG and classical subgradient algo-
rithms agree with the global solution reported in [7]. The iterations for
Cases (i)—(iii) are shown in Tables 4-6. While the classical subgradient
algorithm (Case (ii)) takes 10 iterations to achieve the solution, the
MSG algorithm with the step-sizes in Case (iii) requires 15 iterations. The
MSG algorithm with the new step-sizes in Case (i) obtains the solution in
only two iterations.

Problem 3. The following problem concerns finding a bang-bang con-
strained time-optimal control of the van der Pol system, which is also

Table 4. Problem 2-Case (i) with §=0.1, 0 =3, H= —19.00,¢=20

kb x4 x4 xk Lol T S 7. S T S S V1 S [P A C L 1[I Y€ 2 W £ (L))
—1 —2.0000 —2.0000 —2.0000 —2.0000 1476 —16.000

0 —1.4279 —1.0000 —1.5582 1.5582 1.00 —1.00 —1.00 —1.00 —1.00 —1.00 3.89 —28.747 —20.958
1 —1.0000 —1.0000 —1.0000 1.0000 2.35 —1.00 —1.00 —1.00 —1.00 —1.34 0 —20.000 —20.000
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Table 5. Problem 2-Case (ii) with §=0.1, and H=-19.00

REGINA S. BURACHIK ET AL.

k xf xlz‘ xé’ xi‘ & ué’ u’é ulg uﬁ u/; ||f(xk)|| fo(xk) Hu*, ck)
—1 —2.0000 —2.0000 —2.0000 —2.0000 14.76 —16.000

0 —1.4279 —1.0000 —1.5582 1.5582
1 —1.3554 —1.0000 —1.5347 1.5347
2 —1.2873 —1.0000 —1.5125 1.5122
3 —1.2248 —1.0000 —1.4916 1.4916
4 —1.1671 —1.0004 —1.4720 1.4725
5 —1.1445 —1.0000 —1.3379 1.3379
6 —1.1042 —1.0000 —1.2326 1.2326
7 —1.0530 —1.0000 —1.1119 1.1119
8 —1.0000 —1.0000 —1.0000 1.0007
9 —1.0000 —1.0000 —1.0000 1.0000

1.00 —1.00 —1.00 —1.00 —1.00 —1.00 3.89
1.03 —1.00 —1.00 —1.00 —1.00 —1.03 3.55
1.05 -1.00 —1.00 —1.00 —1.00 —1.05 3.23
1.07 —1.00 —1.00 —1.00 —1.00 —1.07 2.95
1.10 =1.00 —1.00 —1.00 —1.00 —1.10 2.70
1.12 —-1.00 —1.00 —1.00 —1.00 —1.12 1.89
1.16 —1.00 —1.00 —1.00 —1.00 —1.16 1.26
1.20 —1.00 —1.00 —1.00 —1.00 —1.20 5.8x 10~

—28.747 —20.958
—28.046 —20.771
—27.349 —20.602
—26.790 —20.449
—26.243 —20.310
—24.455 —20.207
—23.014 —20.107
—21.423 —-20.028

1.29 —1.00 —1.00 —1.00 —1.00 —1.29 1.5x 103 —20.003 —20.000

35.3 —1.00 —1.00 —1.00 —1.00 —35.3 0

—20.000 —20.000

Table 6. Problem 2—Case (iii) with H=—19.00,8=0.1

k x{‘ xé‘ xé‘ x{,f ck ull‘ ulé u§ uﬁ ulg IFEON fox®  H@uk, b

—1 —2.0000 —2.0000 —2.0000 —2.0000 14.76 —16.000
0 —1.4279 —1.0000 —1.5582 1.5582 1.00 —1.00 —1.00 —1.00 —1.00 —1.00 3.89 —28.747 —20.958
1 —1.3846 —1.0000 —1.54421.5442 1.01 —1.00 —1.00 —1.00 —1.00 —1.01 3.69 —28.327 —20.845
2 —1.3429 —1.0000 —1.5304 1.5310 1.04 —1.00 —1.00 —1.00 —1.00 —1.02 3.49 —27.925 —20.740
3 —1.3032 —1.0000 —1.5176 1.5176  1.06 —1.00 —1.00 —1.00 —1.00 —1.03 3.30 —27.542 —20.640
4 —1.2650 —1.0000 —1.5050 1.5050 1.08 —1.00 —1.00 —1.00 —1.00 —1.04 3.13 —27.175 —20.546
5 —1.2304 —1.0002 —1.49341.4934 1.10 —1.00 —1.00 —1.00 —1.00 —1.05 2.97 —26.834 —20.457
6 —1.2011 —1.0000 —1.4680 1.4694 1.12 —1.00 —1.00 —1.00 —1.00 —1.06 2.76 —26.372 —20.373
7 —1.1720 —1.0000 —1.4684 1.4676 1.14 —1.00 —1.00 —1.00 —1.00 —1.07 2.68 —26.212 —20.294
8§ —1.1498 —1.0073 —1.37051.3723 1.15-1.00 —1.00 —1.00 —1.00 —1.08 2.10 —24.917 —20.230
9 —1.1310 —-1.0000 —1.30151.3015 1.18 —=1.00 —1.00 —1.00 —1.00 —1.09 1.67 —23.951 —20.170

10 —1.1051 —1.0000 —1.2349 1.2349
11 —1.0745 —1.0000 —1.1611 1.1611
12 —1.0343 —1.0000 —1.0712 1.0712
13 —1.0001 —1.0086 —1.0000 1.0001
14 —1.0000 —1.0000 —1.0000 1.0000

1.20 —1.00 —1.00 —1.00 —1.00 —1.11 1.27

—23.045 —20.109

1.24 —1.00 —1.00 —1.00 —1.00 —1.12 8.5x 10~! —22.064 —20.055
1.29 —1.00 —1.00 —1.00 —1.00 —1.12 3.7x 10~ —20.900 —20.011
1.40 —1.00 —1.00 —1.00 —1.00 —1.12 1.8x 1072 —20.044 —19.998

3.57-1.00 —1.00 —1.00 —1.00 —2.320

—20.000 —20.000

studied in [10, 11, 14, 30]. The dynamics of the van der Pol system are

given by the ordinary differential equations

21(t) =2z2(1),

22(t) = —21(1) — (27 (1) = Dza(1) + v (1),

(1)

where z;:=dz;/dt,i =1, 2, the state vector z:[0, 1] — R? is continuous, the

control function v:[0, #;]— {—1, 1} is bang-bang, i.e. v(r) switches between
the values —1 and 1, and #; is the terminal time. The aim is to get from the
initial state z(0)=(1, 1) to the target state z(t;) = (0, 0) in minimum (termi-
nal) time ¢;.
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We consider three switchings such that
— k+1
v(t)=(-1) for 1<t <y, (32)

where k=1,---,4,4=0 and #4=t;. So the sequence of control values we
use is {1, —1,1,—1}. Here #,1,, and 3 are called the switching times. For
convenience, the duration of arcs, namely arc-times, are defined as

&=t —tr—1 =0.

Then t; =& +& +&+&. Let £:=(&,£,&3,&). The problem of minimiz-
ing ¢, while getting from z(0)=(1,1) to z(t) =(0,0) can be stated as

rnéin fo®)=&+&E+E+84
P;: subject to  fi(§)=z;(&1+&E+E5+E)=0, i=1,2,
4

f3(6)= Zl min{0, &} =0,
k=

where f;(£),i=1,2, are obtained by solving the system equations in (31)
with (32). Note that the third constraint in Problem (P3) represents the
nonnegativity conditions & > 0.

Iterations for Cases (i)—(iii) are depicted in Tables 7-9. Figure 1 illus-
trates the initial guess trajectory of the van der Pol system with a dashed
curve in the phase plane. The solution trajectory is shown by a solid curve.
The switching points are marked by asterisks. As can be seen, the initial
trajectory generated by three switchings, or four arcs, with £€°=(1,1,1, 1),
is far from getting to the target z(z;) =(0,0). The solution trajectory gets
to the target in the minimum time 7,=3.09520 with only one switching, or

Table 7. Problem 3-Case (i) with 8:0.1,a:5ﬁ:4,6:5

ko & 2 £x gk * uk ut uk Ix@oll  ty H(uk, c¥)

—1 1.00000 1.00000 1.00000 1.00000 1.94 4.00000
0 0.00000 0.85420 1.02920 0.00000 2.00000 —1.00000 —1.00000 —5.00000 9.8x 10~ 1.88340 2.99265
1 0.00000 0.72300 2.37220 0.00000 2.16121 —1.01019 —0.92004 —5.00000 2.0x 10> 3.09520 3.09520

Table 8. Problem 3—Case (i) with §=0.1, H=4

ko gf & & & ct uy ub ul lx@oll 2y H(uk, cb)

—1 1.00000 1.00000 1.00000 1.00000 1.94 4.00000
0 0.00000 0.85420 1.02920 0.00000 2.00000 —1.00000 —1.00000 —5.00000 9.8x 10~ 1.88340 2.99265
1 0.00000 0.79071 1.53069 0.00000 2.05151 —1.00651 —0.94890 —5.00000 7.0x 10~ 2.32140 3.05605
2 0.00000 0.72300 2.37220 0.00000 2.11897 —1.00289 —0.88154 —5.00000 2.0x 1073 3.09520 3.09520
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Tuble 9. Problem 3—Case (iii) with §=0.1, H =4

ko &f I g £k ck uk u ul lx@e)ll 2y H®uk, &)

—1 1.00000 1.00000 1.00000 1.00000 1.94 4.00000
0 0.00000 0.85420 1.02920 0.00000 2.00000 —1.00000 —1.00000 —5.00000 9.8x 10~! 1.88340 2.99265
1 0.00000 0.80353 1.42160 0.00000 2.04018 —1.00261 —0.97956 —5.00000 7.7x 107! 2.22513 3.02523
2 0.00000 0.77882 1.64210 0.00000 2.08957 —1.00207 —0.95424 —5.00000 6.2x 10~! 2.42092 3.07802
3 0.00000 0.72300 2.37220 0.00000 2.14715 —0.99951 —0.92482 —5.00000 2.0x 10> 3.09520 3.09520
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Figure 1. Initial guess and solution trajectories of the van der Pol system.

two arcs, durations of which are given by (0.72300, 2.37220). This result
agrees with the solution presented in [11].

5.3. COMMENTS ON THE TEST PROBLEMS

In all the three problems, the MSG algorithm with the new stepsizes given
in Case (i) provides a primal solution in fewer iterations than the classical
subgradient method (Case (ii)). The classical subgradient method in turn
generates a solution in fewer iterations than the MSG algorithm with the
stepsizes of Case (iii). In the reported experiments the parameter & € (0, 2)
has been chosen small enough to observe the differences between the per-
formances of Cases (i) and (iii).
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